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We have investigated analytically and numerically the liquid-glass transition of hard spheres for dimensions
d→� in the framework of mode-coupling theory. The numerical results for the critical collective and self-
nonergodicity parameters fc�k ;d� and fc

�s��k ;d� exhibit non-Gaussian k dependence even up to d=800. fc
�s��k ;d�

and fc�k ;d� differ for k�d1/2, but become identical on a scale k�d, which is proven analytically. The critical
packing fraction �c�d��d22−d is above the corresponding Kauzmann packing fraction �K�d� derived by a
small cage expansion. Its quadratic pre-exponential factor is different from the linear one found earlier. The
numerical values for the exponent parameter and therefore the critical exponents a and b depend on d, even for
the largest values of d.
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I. INTRODUCTION

In many situations, the analytical treatment of a specific
physical problem simplifies drastically if the spatial dimen-
sion d becomes infinite. For instance, it is well known that
the mean-field theory for systems in thermal equilibrium be-
comes exact for d=�. The equation of state of a fluid can be
obtained from a virial expansion. For the fluid of hard
spheres, it has been shown that for such packing fractions �
for which the second virial term �which is proportional to ��
is finite or at most algebraically increasing with d, the third
and higher-order virial terms vanish exponentially fast in the
limit d→� �1,2�.

Hard sphere systems are ideal systems to study not only
equilibrium properties, but also the liquid-glass transition
and glassy dynamics. The mode-coupling theory �MCT� �3�
is a microscopic theory of an ideal glass transition. Knowl-
edge of the static density correlators allows to calculate the
long-time relaxation of a supercooled or supercompressed
fluid and to locate the glass transition point at which the
ergodic behavior in the fluid phase changes discontinuously
into a nonergodic one. The experimental results for colloidal
fluids, which can be modeled by hard spheres, exhibit agree-
ment with the corresponding MCT result after the transient
regime over several decades in time within 10% precision
�4,5�.

Properties of equilibrium phase transitions, e.g., the criti-
cal exponents at a second-order phase transition, depend
strongly on the spatial dimensionality. This has motivated the
investigation of the glass transition for d=2 �6–8� and d
=3,4 �8–10�. The most important approximation of MCT is
the factorization of the memory kernel �3�. This kernel is a
time-dependent four-point correlator of the density modes
��k�� which is approximated by a product of time-dependent
two-point correlators. This factorization resembles the mean-
field approximation replacing a static two-point correlator,
e.g., the spin-spin correlator �SiSj� for an Ising model, by a
product of the order parameter, e.g., the magnetization �Si� in
case of the Ising model. Based on this analogy, MCT has
been interpreted as a mean-field theory with the two-point
density correlator as an order parameter �11�, where spatial
fluctuations of the correlation between the pair densities

��r� , t���r�+�� , t+�� and ��r�� , t����r��+�� , t�+�� are neglected.
In a next step, these spatial fluctuations are taken into ac-
count. Finally, it is shown that the upper critical dimension
where the spatial fluctuations do not influence the critical
behavior is dc=6 �11� for systems without and dc=8 �12,13�
with conserved quantities. This implies that the square-root
singularity of the nonergodicity parameter and the relation
between the exponent parameter ��d� and the “critical” ex-
ponents a�d�, b�d� �3� are universal above dc �14�. However,
the exponent parameter ��d� itself being determined by the
static structure factor at the glass transition singularity de-
pends on d. The interpretation of MCT as a mean-field model
challenges the investigation of MCT with full k dependence
for d→�. As already mentioned above, analytical calcula-
tions simplify for d→�, e.g., the leading-order term of the
static and direct correlation functions for hard spheres are
known and become dominant �see below�. Consequently we
will focus on the MCT glass transition of hard spheres in
high dimensions.

Let us shortly review what is already known for hard
spheres and d→�. Taking for the direct correlation function
the leading order of a virial expansion �see below�, using the
Vineyard approximation �15� for the normalized collective
nonergodicity parameters f�k ;d�, i.e., it is f�k ;d�� f �s��k ;d�,
and assuming the nonergodicity parameters f �s��k ;d� of the
self-correlator to be Gaussian in k with width �, a self-
consistency equation for � follows from MCT. As critical
packing fraction for the glass transition, it has been found
�16�

�c
KW�d� 	 
2	ed2−d, d → � . �1�

The replica theory for the structural glass transition �17� is
another microscopic theory. It allows to calculate the Kauz-
mann temperature TK or the corresponding packing fraction
�K at which the configurational entropy per particle vanishes.
Applied to hard spheres in high dimensions and performing a
small cage expansion, it is found that �18�

�K�d� 	 d ln�d/2�2−d, d → � . �2�

Our main motivation is to explore the MCT scenario for
d→�, i.e., we want to investigate whether the A2 singularity

PHYSICAL REVIEW E 81, 041502 �2010�

1539-3755/2010/81�4�/041502�10� ©2010 The American Physical Society041502-1

http://dx.doi.org/10.1103/PhysRevE.81.041502


�3� of MCT in d=3 survives for d→�. Furthermore, we
want to check whether the critical nonergodicity parameters
fc�k ;d� and fc

�s��k ;d� of the collective and self-correlators,
respectively, are Gaussian and become equal for d→� and
whether the critical packing fraction �c�d� coincides with
�c

KW�d� and if not how it relates to the Kauzmann value
�K�d�. In a first step, we have solved numerically the MCT
equations for the collective and self-nonergodicity param-
eters f�k ;d� and f �s��k ;d�, respectively, up to d=800. In-
spired by the numerical solution, we have investigated in a
second step the corresponding equations analytically. The
outline of our paper is as follows. The next section presents
the MCT equations in arbitrary dimensions d and their nu-
merical solution for the nonergodicity parameters of the col-
lective and self-correlator. Based on these numerical results,
we present in the third section an analytic investigation of
the MCT equations for hard spheres for d→�. Section IV
contains a summary and conclusions.

II. MCT EQUATIONS AND NUMERICAL SOLUTION

A. MCT equations

We consider N hyperspheres with diameter 
 in a
d-dimensional box with volume V. The number density is
n=N /V and the packing fraction

� = nVd�
/2� , �3�

with

Vd�R� =
	d/2

��d/2 + 1�
Rd �4�

the volume of a d-dimensional sphere with radius R. ��x� is
the gamma function.

MCT provides an equation of motion for the intermediate
scattering function S�k , t� �3�. For a one-component liquid
with Brownian dynamics, the MCT equation for the normal-
ized correlator ��k , t�=S�k , t� /S�k� is given by

k�̇�k,t� + ��k,t� + �
0

t

dt�m�k,t − t���̇�k,t�� = 0, �5�

where k is a microscopic relaxation rate related to the short-
time diffusion constant. The memory kernel in bipolar coor-
dinates reads

m�k,t� � Fk���q,t��

= �d−1
1

�4	�d · �
0

�

dp�
k−p

k+p

dqV�k,p,q���p,t���q,t� ,

�6�

with the vertices in arbitrary dimensions d �6�

V�k,p,q� = n
pq

kd+2S�k�S�p�S�q��4k2p2

− �k2 + p2 − q2�2��d−3�/2��k2 + p2 − q2�c�p�

+ �k2 − p2 + q2�c�q��2, �7�

where c�k� is the direct correlation function and �d

=2	d/2 /��d /2� is the surface area of a d-dimensional unit
sphere.

The corresponding equation of motion for the self-
correlator ��s��k , t� follows from Eq. �5� by replacing k and
m�k , t� by k

�s� and m�s��k , t�, respectively. m�s��k , t� is given
by

m�s��k,t� � Fk
�s����q,t�,��s��q,t��

=
�d−1

�4	�d�
0

�

dp�
k−p

k+p

dqV�s��k,p,q���p,t���s��q,t� ,

�8�

with the corresponding vertices �6�

V�s��k,p,q� = 2n
pq

kd+2S�p���k2 + p2 − q2�c�p��2�4k2p2 − �k2

+ p2 − q2�2��d−3�/2. �9�

Note that the vertices Eqs. �7� and �9� reduce to the well-
known expressions �3� for d=3 for which the triple direct
correlation function c�3��k , p ,q� has been neglected.

B. Static correlation functions

The static correlation function S�k��S�k , t=0� is related
to the direct correlation function by the Ornstein-Zernike
equation

S�k;d,�� = �1 − n���c�k;d,���−1. �10�

The direct correlation function c�k ;d ,�� is known analyti-
cally for d→�, in case that the third and higher virial terms
of the virial expansion can be neglected. It has been shown
�19� that the truncation for d→� at the second virial term is
even valid above the packing fraction at which the virial
series diverges. Under these conditions, it is c�r ;d ,��	
−��
−r�= f�r� �Mayer function� from which one obtains

c�k;d,�� 	 c�k;d� = − �2	�d/2
dJd/2�k
�/�k
�d/2, �11�

where c�k ;d� does not depend on �. 
 is the diameter of the
hard spheres and Jn�x� is the Bessel function of order n. Note
that the d and � dependences of the various quantities are
made explicit in cases where it is useful and suppressed oth-
erwise. There are two d-dependent k scales on which the k
variation of S�k ;d ,�� is different. For

k̄ = k
/
d, �̄ = 2d� , �12�

it follows from Eqs. �3�, �10�, and �11� by using the Taylor

series for Jd/2�
dk̄� �20� in the scaling limit k→�, d→�,

�→0 such that k̄=k
 /
d and �̄=2d� are fixed

lim
d→�

S��
d/
�k̄;d,2−d�̄� = �1 − �̄c̄�k̄��−1 � S̄�k̄;�̄� , �13�

where

c̄�k̄� = − exp�−
1

2
k̄2� . �14�

Figure 1 demonstrates the convergence of S�k ;d ,�� to the

scaling function S̄�k̄ ; �̄� on the scale k̄ for �̄=2d� fixed.
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S̄�k̄ ; �̄� does not exhibit peaks. It increases monotonically

from S̄�0; �̄�=1 / �1+ �̄��1 to the ideal-gas behavior

S̄�k̄ ; �̄�=1 for k̄→�. This is the well-known effect for k
→0 of the suppression of the compressibility below the cor-
responding value of an ideal gas which, however, is much
weaker than for d=3.

The second k scale is linear in d,

k̃ = k
/d, �̃ = �2de−d/2. �15�

Making use of the asymptotic expansion of Jn�nx� �20�, one
obtains

S��d/
�k̃;d,2−ded/2�̃� 	 �1 − �̃c̃d�k̃��−1 � S̃d�k̃;�̃� , �16�

where

c̃d�k̃� 	 −
1

k̃d/2
�1 − 4k̃2�−1/4exp�−

d

2
�arctanh
1 − 4k̃2

− 
1 − 4k̃2�� �17�

for k̃�1 /2 and

c̃d�k̃� 	 −
2

k̃d/2
�4k̃2 − 1�−1/4cos�d

2

4k̃2 − 1

−
d

2
arctan
4k̃2 − 1 −

	

4
� �18�

for k̃�1 /2. S̃d�k̃ ; �̃� oscillates for k̃�1 /2.
The position k��d� of the main peak �first sharp diffraction

peak� of S�k ;d ,�� is given by the first nonvanishing zero of
Jd/2+1�x�, which is �20�

k��d� 	 �d/2 + 1� + a0�d/2 + 1�1/3, a0 = 1.855 757 1.

�19�

Since k��d� and c�k ;d� from Eq. �11� are � independent, the
packing fraction ���d� for which S�k��d� ;d ,�� diverges fol-
lows from Eqs. �3�, �4�, and �10�

���d� =
	d/2�
/2�d

��d/2 + 1�c�k��d�;d�
. �20�

Using again the asymptotic properties of the gamma and
Bessel function and especially from �20�

Jd/2�k��d�� = Jd/2+1� �k��d�� 	 − b0�d/2 + 1�−2/3,

b0 	 1.113 102 8, �21�

we obtain

���d� 	 c0d1/6 exp�a0�d/2�1/3��
8/e�−d,

c0 = b0
−1	−1/22−2/3e 	 0.867 956, �22�

i.e., the leading d dependence of ���d� is the exponential
factor �
8 /e�−d	�1.7155�−d �21�. Note that S�k ;d ,���0 for
all k provided �����d�. For �����d�, the height of the first
sharp diffraction peak of S�k ;d� is given as

S�k��d�;d,�� 	 1 +
�

���d�
. �23�

Figure 2 presents S�k ;d ,�� on the scale k̃=k
 /d for d
=200 and � of order ���d�.

S��d /
�k̃ ;d ,�� is practically zero for k̃�0.5, develops its

main peak at k̃��d�=k��d�
 /d, and decays very fast to one

for k̃� k̃��d�. In contrast to this, Fig. 3 shows S��d /
�k̃ ;d ,��
again on the scale k̃ but for � of order �c�d�	0.22d22−d,
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FIG. 1. �Color online� S��
d /
�k̄ ;d ,2−d�̄� on the scale k̄ for

�̄=1 and d=5, 10, 20. Bold black line is S̄�k̄ ;1�.
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FIG. 2. �Color online� S��d /
�k̃ ;d ,�� vs k̃ for d=200 and �
=0.1��, �=0.5��.
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FIG. 3. �Color online� S��d /
�k̃ ;d ,�� vs k̃ for d=200, 400, 800
and �=�c�d�.
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which will turn out to be the critical packing fraction of the
MCT glass transition. Note that �c�d� is exponentially
smaller than ���d�.

Except for k̃=O�1 /
d� which is k
=O�
d�, it is
S�k ;d ,��	1, i.e., the static structure factor on a k-scale lin-
ear in d is very close to that of an ideal gas for d→�. The
first sharp diffraction peak of the conventional liquids has
disappeared due to the lack of intermediate range order at
�=�c�d�. These results will be used for the analytical treat-
ment of the MCT equation. It is important to note that
�S�k ;d ,��−1� is very small for k
=O�d�, �=O��c�d��, and
d�1, but not zero. Accordingly, the direct correlation func-
tion does not vanish, in contrast to an ideal gas with finite
density. Therefore, the vertices Eqs. �7� and �9� are nonzero
and exhibit nontrivial k dependence.

C. Numerical solution

The nonergodicity parameter for the collective correlator
is the long-time limit of the normalized intermediate scatter-
ing function

f�k;d,�� = lim
t→�

��k,t;d,�� �24�

and similarly for the self-correlator

f �s��k;d,�� = lim
t→�

��s��k,t;d,�� . �25�

They are the order parameters for the liquid-glass transition.
From Eq. �5� and the corresponding equation for
��s��k , t ;d ,��, one obtains the algebraic, nonlinear equations
for the nonergodicity parameters

f�k;d,��/�1 − f�k;d,��� = Fk�f�q;d,��;d,�� �26�

and a similar equation for f �s��k ;d ,�� by replacing Fk by
Fk

�s�. Note that we also made explicit the d and � depen-
dences of the functional Fk on the right-hand side of Eq.
�26�. Equation �26� and the corresponding one for
f �s��k ;d ,�� have been solved numerically as follows.

Equation �26� is rewritten such that the nonergodicity pa-
rameters f�k ;d ,�� can be evaluated by iterating the equation

f �i+1��k;d,�� =
Fk�f �i��q;d,��;d,��

Fk�f �i��q;d,��;d,�� + 1
, �27�

with the initial value

f �0��k;d,�� � 1 �28�

and similar equations for f �s��k ;d ,��. Note that in case of
hard spheres, the functional Fk for the zero-order iterate
f �0��k ;d ,�� from Eq. �28� exists only for a finite cutoff at
kmax. The integrals appearing in Fk�f �i��k ;d ,�� ;d ,�� are re-
placed by Riemann sums with an upper cutoff 
kmax
=max�40d1/2 ;4d ;0.2d3/2� and 500 gridpoints for d�200,
1000 gridpoints for 200�d�600, and 1500 gridpoints for
d�600. The critical packing fraction �c�d� is the packing
fraction, where

f�k;d,��� =0, � � �c�d�
�0, � � �c�d�� �29�

and the critical nonergodicity parameters are given by

fc�k;d� � f�k;d,�c�d�� . �30�

Because the real critical packing fraction and the critical
nonergodicity parameters can never be computed numeri-
cally in finite time, we evaluated fc�k ;d� at a packing frac-
tion �̂c�d� where limi→� f �i��k ;d , �̂c�d��=0 but

min
i
�max

k
� f �i+1��k;d,�̂c�d�� − f �i��k;d,�̂c�d��

f �i+1��k;d,�̂c�d��
�� � � ,

�31�

with �=10−7 for d�600 and �=10−5 for d�600. It can be
estimated that the relative difference between this packing
fraction �̂c�d� and the real critical packing fraction �c�d� is
of order �. It has been verified that the system really be-
comes nonergodic near this packing fraction, i.e., f�k ;d ,��
�0 for �� �1+�O�1���̂c�d�. The critical nonergodicity pa-
rameters can then be approximated by fc�k ;d�
	 f �i0��k ;d , �̂c�d��, where i0 equals the iteration step, where

max
k
� f �i0+1��k;d,�̂c�d�� − f �i0��k;d,�̂c�d��

f �i0+1��k;d,�̂c�d��
� �32�

reaches a minimum �24�. It has been verified that there are no
visible differences in the critical nonergodicity parameters
obtained by this procedure with different values of � and that
f�k ;d ,�c�d�+��� converges to f �i0��k ;d , �̂c�d�� with order

��. Additionally, it has been verified that fc�kmax;d�
�10−16 for all evaluated dimensions. By increasing kmax and
the number of gridpoints, the relative error of the critical
packing fraction due to the discretization can be estimated to
be smaller than 10−3 for d�600.

The nonergodicity parameters always show numerical ar-
tifacts on the first few gridpoints in k space. This is a prob-
lem when trying to observe the characteristics of fc�k ;d� for
small wave numbers, especially for high dimensions. So we
interpolated fc�k ;d� onto a much finer k grid and performed
one single iteration step equivalent to the one given in Eq.
�27�. This procedure improves the result for fc�k ;d� by shift-
ing the numerical artifacts to much smaller values of k.

From this solution, we obtain the critical packing fraction
�c�d�, shown in Fig. 4. The d dependence of �c can be well
fitted by

�c�d� 	 ad22−d, a 	 0.22. �33�

The critical nonergodicity parameters fc�k ;d� and
fc

�s��k ;d� are presented in Figs. 5�a� and 5�b�, respectively, for
different values of d. Figures 5�a� and 5�b� reveal the follow-
ing properties:

�i� fc�k ;d� and fc
�s��k ;d� differ on the scale k
=O�
d�, but

become identical on the scale k
=O�d�, for d large enough.
�ii� Both, fc�k ;d� and fc

�s��k ;d�, exhibit non-Gaussian k
dependence.

�iii� There are three characteristic k scales. fc�k ;d� in-
creases from fc�0;d� to its maximum value on a scale k

�
d, develops a plateau on a scale k
�d, and it varies on a
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scale k
�d3/2, on which a steep descent to zero occurs for

k
	 k̂0d3/2, where k̂0	0.15. The plateau value on scale k

�d converges to one for d→�.

�iv� Since fc�k ;d� changes from 1 to zero around k


	 k̂0d3/2, we will choose k̂0 such that fc�k̂0d3/2 /
 ;d�=1 /2.

fc�k ;d� is of order 1 for �k
− k̂0d3/2� of order d1/2, i.e., for

�k̃− k̂0d1/2� of order d−1/2.
Using Eq. �26�, fc�0;d� can be represented as a functional

of fc�k ;d� �6�. Making use of this relationship yields the
numerical precise values for fc�0;d� shown by diamonds in
Fig. 5�a�. Note that for the self-correlators, it is fc

�s��0;d�=1
for all d because the momentum of a tagged particle is not
conserved.

A crucial quantity of MCT is the exponent parameter ��d�
which determines the critical exponents of both power laws
in time, the critical law and the von Schweidler law, and the
divergence of the corresponding relaxation-time scales at the
glass transition singularity �3�. Figure 6 presents the numeri-
cal result for ��d� with an estimated relative error of about
5�10−3 for d�600 and possibly a larger error for d=700
and 800.

Since the direct correlation function �11� is not correct for
small d, the variation of � with d below 100 and particularly
the high sensitivity close to d=17 is an artifact of the incor-
rect static input. This holds also for �c�d� of Fig. 4. The
concave curvature of �c�d� and the cusplike behavior of ��d�

around d=17 relates to the fact that the glass transition is still
influenced by the main diffraction peak of the static structure
factor for d�17, while this peak is not important anymore
for d�17. Figure 4 reveals the correct asymptotic d depen-
dence to appear for d�100.

III. MCT EQUATIONS: ANALYTICAL APPROACH

In this section, we will demonstrate that the MCT func-
tional Fk strongly simplifies for d→�. The essential steps
will be given, only.

In the first step, we rewrite Fk�f�q�� �Eq. �6� with ��q , t�
replaced by the nonergodicity parameters f�q�� on the scale

k̃=k
 /d. Quantities on this scale will be denoted by a tilde,

e.g., f̃�k̃�. Now, we prove that F�f�q�� on this scale reduces

to Fk
�s� for k̃ of order 1 and larger.

The last square bracket in Eq. �7� contains a mixed term
�c�p̃d /
�c�q̃d /
� which is oscillating in p̃ and q̃ faster and
faster under an increase of d. Since S�p̃d /
�S�q̃d /
�, and
f�p̃d /
�f�q̃d /
� are smooth and not strongly oscillating �see
Sec. II�, the mixed term integrated over p̃ and q̃ will not
contribute for d→�. Taking account of this fact and using
the integrand’s symmetry with respect to p̃↔ q̃, we get for
d→� the MCT functional Eq. �6� but with the replacement

V�k̃d/
, p̃d/
, q̃d/
� → S�k̃d/
�S�q̃d/
�V�s��k̃d/
, p̃d/
, q̃d/
�

→ V�s��k̃d/
, p̃d/
, q̃d/
� . �34�

The latter step in Eq. �34� uses S�k̃d ;d�→1 for d→� and k̃
of order 1 or larger. Remember that this does not hold for

k̃=O�1 /
d� �see Sec. II B�. Equation �34�, together with the
Vineyard approximation for ��p̃d /
 , t� in Fk

�s� �Eq. �8��, im-
plies that the MCT equations for the self-correlator and col-
lective correlator on a k-scale linear in d become identical for
d→�. However, for large but finite d, there is an interval
k
� �0,O�
d�� for which both MCT functionals differ from
each other.

Having reduced V to V�s� on the k-scale linear in d further
simplifications occur due to d→�. First of all, we can re-

place S�p̃d /
� in V�s��k̃d /
 , p̃d /
 , q̃d /
� by 1. The product
of both square brackets in Eq. �9� can be rewritten as
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d
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6

2d ϕ c(d
)

FIG. 4. �Color online� d dependence of the critical packing frac-
tion �c�d� on a log-log representation. Dashed line is 2d�c�d�
	ad2. Dotted line is ���d� from Eq. �20�.
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FIG. 5. �Color online� k̄ dependence of the critical nonergodicity
parameters �a� fc�k ;d� and �b� fc

�s��k ;d� for d=200, 400, 600, and
800. Diamonds in �a� mark the numerical precise values for fc�0;d�
and the dotted line in �b� presents fc�k ;600�.
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FIG. 6. d dependence of the exponent parameter �. Full symbols
mark the regime where �c�d� from Fig. 4 follows the asymptotic
result �33�. The values for d=700 and 800 depicted by full circles
possibly have a larger relative error.
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−2d+2d2d−2�2k̃p̃�d−1�1 − � k̃2 + p̃2 − q̃2

2k̃p̃
�2��d−3�/2

�� k̃2 + p̃2 − q̃2

2k̃p̃
�2

c2�p̃d/
� . �35�

The square bracket in Eq. �35� can be replaced by

e−d/2�k̃2 + p̃2 − q̃2 / 2k̃p̃�2
. Then, we use

x2e−�d/2�x2 →

	

4
�2

d
�3/2���x −
2

d
� + ��x +
2

d
�� ,

�36�

which allows to perform the integration over q̃. Next we
account for the asymptotic behavior of Jn�nx� for n→� �20�
and obtain from Eq. �11�

c2�p̃d� = �2	�d
2dd−dJd/2
2 ��d/2�2p̃�/p̃d

	 4�2	�d
2dd−d�p̃d	d
4p̃2 − 1�−1��p̃ −
1

2
�

�cos2�d

2

4p̃2 − 1 −

d

2
arctan
4p̃2 − 1 −

	

4
� .

�37�

With these simplifications and the fact that cos2�¯ � in Eq.
�37� oscillates very fast for d large with average 1/2, we
arrive at

F̃k̃� f̃�q̃�� 	 �
2d

k̃2	d
�

1/2

�

dp̃
p̃


4p̃2 − 1
f̃�p̃�� f̃�q̃−� + f̃�q̃+�� ,

�38�

where

q̃� = �k̃2 + p̃2 � 2
2

d
k̃p̃�1/2

. �39�

Our first goal will be the evaluation of the critical packing

fraction �c�d�. For this we choose k̃= k̃0� k̂0d1/2 such that

f̃ c�k̃0�=1 /2 �see Sec. II C�. Equation �26� implies

F̃k̃0
� f̃ c�q̃�� = 1, � = �c�d� . �40�

f̃ c�q̃�� is of order 1 for k̃= k̃0 and p̃=O�1� and decays rapidly

to zero for p̃�1. Furthermore, f̃�p̃�	1 for p̃=O�1�. There-
fore, the integral in Eq. �38� is of order 1, i.e., order d0. Then

we get from Eq. �38� with �=�c�d� and k̃= k̂
d,

1 	 F̃k̃0
� f̃ c�q̃�� 	 	−1�c�d��2d/d2�k̂0

−2O�d0� , �41�

where k̂0 is of order d0, as well. Consequently, it must be

�c�d� 	 const d22−d, �42�

in agreement with the numerical result for d�100 �cf. Fig.

4�. Next we choose k̃� k̃0. f̃ c�q̃���0 for q̃�� k̃0, which im-
plies

p̃ � � 
2/dk̃ + 
�2/d�k̃2 + �k̃0
2 − k̃2� 	 
�k̃0

2 − k̃2�

for d→� and k̃� k̃0. With f̃ c�p̃�� f̃ c�q̃−�+ f̃ c�q̃+��	2 for p̃

�
k̃0
2− k̃2, the integration in Eq. �38� can be done. Then we

get from Eq. �38� for k̃0− k̃� k̂0 /
d after substitution of �c�d�
from Eq. �33�

lim
d→�

�F̃
dk̂� f̃ c�q̃;d�;d�/
d� = F̂0�k̂� , �43�

with the master function

F̂0�k̂� 	 �a	−1k̂−2
k̂0
2 − k̂2, k̂ � k̂0

0, k̂ � k̂0.
� �44�

Figure 7 presents the numerically exact result for

F̃
dk̂� f̃ c�q̃ ;d� ;d� /
d as function of k̂=k
 /d3/2.

This figure demonstrates the convergence of F̃
dk̂ /
d at

the glass transition singularity to the master function F̂0�k̂�.
For k̂� k̂0, i.e., k̃� k̃0, the critical nonergodicity parameters

f̃ c�k̃ ;d� are close to one for d→�. Making use of Eqs. �26�
and �43�, the k̃ and d dependences of f̃ c�k̃ ;d� can be ex-
pressed as follows:

f̃ c�k̃;d� 	

dF̂0�k̃/
d�

1 + 
dF̂0�k̃/
d�
, �45�

i.e., on the scale k̂=k
 /d3/2 it is

lim
d→�

fc��d3/2/
�k̂;d� � f̂ c�k̂� = ��k̂0 − k̂� . �46�

The convergence of the critical nonergodicity parameters to a
step function is demonstrated in Fig. 8.

IV. SUMMARY AND CONCLUSIONS

The liquid-glass transition for hard spheres in high dimen-
sions d has been reinvestigated in the framework of MCT.
Our aim has not been exploring the validity of the MCT
approximations for d→� �we come back to this point be-
low� but to take MCT as a microscopic theory in any dimen-
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FIG. 7. �Color online� Numerical result for F̃
dk̂� f̃ c�q̃ ;d� ;d� /
d

as function of k̂ for various d. The master function F̂0�k̂� is shown
as bold black line.
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sion and to check the generic MCT-bifurcation scenario �A2
singularity� and to calculate the critical packing fraction, the
corresponding nonergodicity parameters, and the exponent
parameter. The direct correlation function for hard �hyper-�
spheres for finite d is not known exactly. However, if �
=O��c�d���d22−d, being exponentially smaller than ���d� at
which the Kirkwood-like instability occurs, the corrections
to the leading-order result �Eq. �11�� can be neglected for d
→�. This offers the possibility to calculate various quanti-
ties such as �c�d�, fc�k ;d�, fc

�s��k ;d�, and ��d� from MCT for
a liquid of hard spheres in high dimensions.

A. Summary

Let us first summarize our results. The numerical solution
of the MCT equations for the collective and self-
nonergodicity parameters up to d=800 reveals non-Gaussian
dependence of the critical nonergodicity parameters fc�k� and
fc

�s��k� on the wave number k �cf. Fig. 5�. Three different k
scales were found on which fc�k� behaves differently. For
k
=O�
d�, fc�k� increases from fc�0��1 to a maximum
value close to 1. fc�k� stays close to 1 for k
=O�d� and

finally drops to zero for k
	 k̂0d3/2. The decrease to zero

happens on the scale k̂=k
 /d3/2 in an interval around k̂0 with
width of order 1 /d. fc

�s��k� and fc�k� are identical for k

=O�d� but differ for k
=O�d1/2�. The exponent parameter
��d� �cf. Fig. 6� varies with d even for d�100 and strongly
exceeds the value ��3�	0.735 �25� for d�1. Note that ��d�
cannot be larger than 1. The critical amplitudes h�k ;d� �3�
exhibit the expected k dependence. They are in antiphase
with fc�k ;d�, i.e., they have a maximum �minimum� where
fc�k ;d� has a minimum �maximum�. Particularly, on the
scale k
=O�d�, the critical amplitudes are rather small since
fc�k ;d��1. The numerical results �up to d=800� also show
that the largest eigenvalue E0��� of the stability matrix �3� is
not degenerate and it approaches the bifurcation point at
�c�d� as �1−E0�����
��−�c�d�� /�c�d�, for �→�c�d� from
above. Hence, the glass transition singularity is an A2 singu-
larity, consistent with an exponent parameter ��d� smaller
than 1, as demonstrated by Fig. 6. What happens for d=� is
not clear. The distances between the largest eigenvalues of
the stability matrix obtained numerically slightly decrease
with increasing d. Whether or not the largest eigenvalue be-
comes degenerate for d=� is an open question, similar to the

question whether ��d� in Fig. 6 converges to one for d→�
or not. Therefore, our numerical results do not allow to ex-
clude a higher-order singularity at d=�.

Inspired by these numerical results, we have been able to
prove analytically that the Vineyard approximation �15� be-
comes exact for d→� on a scale k
=O�d� and that the
critical packing fraction �c�d� decays exponentially as 2−d,
with a prefactor which is quadratic in d. This is consistent
with the numerical result for d�100. Furthermore, the ana-
lytical approach has also shown that the k and d dependences
of the critical nonergodicity parameters and of the MCT

functional F̃k̃� f̃ c�q̃ ;d� ;d� at �c�d� can be obtained from a

master function F̂0�k̂� �cf. Eqs. �43� and �45��. This relation-
ship yields

lim
d→�

fc�k̂
−1d3/2;d� = ��k̂0 − k̂�, d → � , �47�

where k̂0	0.15.

B. Validity of MCT

Although it has not been our purpose to prove or disprove
the validity of MCT for d→�, it might be useful to com-
ment on this question. First of all, the vertices �7� and �9�
seem to be exact for d→�, since the leading order of
c�k ;d ,�� is known analytically and the neglect of the triplet
direct correlation function c�3��p� ,q��, which also enters into
the vertices �3�, is justified for ��d22−d and d→� �see the
Appendix�. Accordingly, the convolution approximation for
the static three-point correlator ���k�����p����q��� �usually done
in MCT� becomes exact for d→� and packing fractions
such that 2d��d� does not increase exponentially or faster
with d. The factorization of the static four-point density cor-
relator S�4��q�1 ,q�2 ,q�3 ,q�4�= 1

N ����q�1����q�2���q�3���q�4��, which
is needed for the projector onto pairs of density modes, is
another approximation. Similar to S�3��p� ,q��= 1

N ���p�
+q�����p����q��� �see the Appendix�, one can define a quadru-
plet direct correlation function c�4��q�1 ,q�2 ,q�3� via a corre-
sponding Ornstein-Zernike equation. However, this equation
is already rather involved �26� such that we have not at-
tempted to prove that the factorization is valid for �=�c�d�
and d→�. So it remains an open question whether this fac-
torization becomes exact again. If so, the “only” two remain-
ing crucial approximations of MCT are the projection of the
fluctuating force onto pair modes and the subsequent factor-
ization of the pair density correlator with reduced dynamics
into a product of density correlators ��k , t� with full dynam-
ics. Whether these two steps become exact for d→� is an
interesting but also a highly nontrivial question. Activated
processes smear out the glass transition singularity. Since it
seems that the local barriers between adjacent metastable
configurations increase with increasing d �see also Ref. �18��,
these hopping processes may become suppressed for d→�.
Even if this is true, it is not obvious that the remaining two
approximations of MCT become exact for d→�.

One might conclude that MCT for d→� necessarily fails
because of S�k ;d ,�c�d��	1 for k
=O�d�, excluding the
cage effect �3� as driving mechanism, and one may argue that
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FIG. 8. �Color online� Numerical critical nonergodicity param-

eters on the scale k̂=k
 /d3/2 for various dimensions d.
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the dynamics will be described better by a Boltzmann-
Enskog equation. Indeed, a modified Enskog equation was
derived from the binary-collision expansion �27�. But its va-
lidity for packing fractions of order 2−d has not been proven.
Here, two comments are in order. First, a cage does not
necessarily require a maximum number of adjacent spheres.
For instance, a �simple� hypercubic lattice built up of peri-
odically arranged hyperspheres has 2d nearest neighbors and
a volume fraction �hypercube�d��d−d/2, which is much smaller
than �c�d��2−d. Therefore, the number of contacts between
neighbors for �=�c�d� could be large enough in order to
have a cage. Furthermore there is evidence that the packing
fraction �MRJ�d� for maximally random jammed states in d
dimensions is given by �c1+c2d�2−d �28� or even with an
additional term with a quadratic prefactor c3d2 �29�. These
densities are not larger than �c�d�. The corresponding pair-
correlation function g2�r ;d� flattens under an increase of d
from 3 to 6 �28�, i.e., comes closer to the ideal-gas value
gig�r ;d�=1 for r�
. Second, concerning MCT
S�k ;d ,�c�d��	1 does not imply that the direct correlation
function c�k ;d ,�c�d�� and the vertices are zero. It is the qua-
dratic dependence of the vertices on c�k ;d ,�� in combina-
tion with its explicit n dependence and the use of the scaled

variables k̃=k
 /d which make the coupling of the modes
finite despite the small packing fraction �c�d��d22−d. This
is completely similar to the MCT approach to colloidal ge-
lation for a liquid of hard spheres with attractive Yukawa
potential �30,31�. For packing fraction �→0 and potential
strength K→� with K�2=�=const, these authors prove that
S�k�→1 for all k. However, the vertices remain finite. At a
critical value �c, a liquid-gel transition occurs. fc�k� is simi-
lar to fc

�s��k�, quite analogous to our outcome. The equilib-
rium structure at �c is highly ramified where the “caging” of
a sphere is generated by a smaller number of neighbors.

C. Conclusions

In Sec. IV A, we have presented our various results from
MCT in high dimensions. Now we want to discuss the most
essential findings in the light of earlier results and will draw
some conclusions.

Our critical nonergodicity parameters have a non-
Gaussian k dependence, in variance with the assumption in
Ref. �16�. This discrepancy is the origin of the different pre-
exponential factor of the critical packing fraction which we
have found to be quadratic in d and not linear �16�. Due to
this quadratic d dependence, our MCT result for �c�d� is
larger than the Kauzmann packing fraction �K�d� �Eq. �2��.
This cannot be true since the packing fraction for the Kauz-
mann transition �static glass transition� should be above the
packing fraction for the MCT transition �dynamical glass
transition�. �K�d� has been calculated within a small cage
expansion �18�, which is a kind of Gaussian approximation.
This could be the reason why �K�d� �Eq. �2�� is below �c�d�
�Eq. �33��.

As argued in Sec. IV B, it is not necessarily true that a
structureless static correlator rules out caging. But, even if
the cage effect would be absent, the essential question would
be whether the quality of both MCT approximations neces-

sarily requires the existence of caging or not. Since an ana-
lytical investigation of the validity of these approximations
seems to be extremely difficult, a way to get an insight is an
approach by a computer simulation. Provided such simula-
tional results would deviate more and more from our results
with increasing dimensions, this would hint at a failure of
MCT for d→�. Such a failure would imply that MCT,
which has been interpreted as a mean-field theory �11�, does
not become exact in the limit of high dimensions, in contrast
to equilibrium phase transitions. We hope that these conclud-
ing remarks may stimulate and encourage further investiga-
tions, contributing to a better understanding of MCT.
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APPENDIX

We want to prove the following statement: for all packing
fractions ��d� such that 2d��d� does not increase exponen-
tially or faster with d for d→�, the static three-point corre-
lation function S�3��k� ,k��� reduces in the limit of high dimen-
sions to S�k�S�k��S�k� +k���, i.e., the convolution
approximation becomes exact. For this proof, we use the
Ornstein-Zernike equation for three-particle correlation func-
tions �32�

S�3��k�,k��� = S�k�S�k��S�k� + k����1 + n2c�3��k�,k���� . �A1�

So, we have to show that n2c�3��k� ,k���→0 for all k� , k�� for
d→� and � constrained as above. The explicit dependence
of c�3��k� ,k��� on k� , k�� does not have to be considered, as we
can use for all k� , k��,

n2c�3��k�,k��� = n2� ddr� ddr�e−ik�r�e−ik�r��c�3��r�,r���

� n2� ddr� ddr�c�3��r�,r��� . �A2�

Now we can expand c�3��r� ,r��� into diagrams, where the lines
are Mayer functions and the vertices are single-particle den-
sities. This expansion only consists of loop diagrams. We
want to show now that the contribution of each of these
diagrams to n2�ddr�ddr�c�3��r� ,r��� vanishes in the limit d
→�. To do so, we apply the theorem of Wyler et al. �2�. This
theorem states that a loop diagram leads to an exponentially
smaller contribution to an integral like the one appearing in
the last line of Eq. �A2� than a tree diagram of the same
order. The simplest diagram in the expansion of c�3��r� ,r���
reads

c0
�3��r�,r��� = ��
 − r���
 − r����
 − r� − r��� , �A3�

which can be inserted into Eq. �A2�
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c0
�3��k�,k��� �� ddr� ddr���
 − r���
 − r����
 − r� − r��� .

�A4�

The integral occurring in Eq. �A4� leads to an exponentially
smaller contribution than the corresponding tree diagram of
the same order �2�

� ddr� ddr���
 − r���
 − r����
 − r� − r���

� �d� ddr� ddr���
 − r���
 − r�� = �d�Vd�
��2,

�A5�

where Vd�
� is the volume of a d-dimensional sphere with
radius 
 and

� � 1. �A6�

From Eqs. �A4� and �A5�, we obtain

n2c0
�3��k�,k��� � �d�nVd�
��2. �A7�

Together with

� = nVd�


2
� = 2−dnVd�
� , �A8�

this leads to

n2c0
�3��k�,k��� � �d�2d��2, �A9�

i.e., for all packing fractions, where 2d� does not increase
exponentially or faster with d, we obtain from Eqs. �A6� and
�A9�

n2c0
�3��k�,k��� →

d→�
0 for all k�, k��. �A10�

The contributions of all other diagrams are also exponen-
tially smaller than the corresponding tree diagrams �2�,
which leads to

n2ci
�3��k�,k��� � �i

dn2�Vd�
��2nj�Vd�
�� j , �A11�

where j is the number of vertices over which it has to be
integrated in the corresponding diagram and �i is always
smaller than one. From this we obtain

n2ci
�3��k�,k��� � �i

d�2d�� j+2 �A12�

or

n2ci
�3��k�,k��� →

d→�
0 for all k�,k�� and all i , �A13�

provided 2d��d� does not increase exponentially or faster
with d.
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